An Empirical Evaluation of the Usefulness of Word Embedding Techniques in Deep Learning-Based Vulnerability Prediction
Gespeichert in:
Veröffentlicht in: | EuroCybersec (2. : 2021 : Nizza) Security in computer and information sciences |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2022
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Titel | Jahr | Verfasser |
---|---|---|
Correlation-Based Anomaly Detection for the CAN Bus | 2022 | Gazdag, András |
AI and Quality of Service Driven Attack Detection, Mitigation and Energy Optimization: A Review of Some EU Project Results | 2022 | Çağlayan, Mehmet Ufuk |
Botnet Attack Detection with Incremental Online Learning | 2022 | Nakip, Mert |
Optimizing Energy Usage for an Electric Drone | 2022 | Czachórski, Tadeusz |
Secure Authentication for Everyone! Enabling 2nd-Factor Authentication Under Real-World Constraints | 2022 | Fietkau, Julian |
Application of a Human-Centric Approach in Security by Design for IoT Architecture Development | 2022 | Vasileva, Violeta |
Mitigating the Massive Access Problem in the Internet of Things | 2022 | Gelenbe, Erol |
T-RAID: TEE-based Remote Attestation for IoT Devices | 2022 | Nagy, Roland |
An Empirical Evaluation of the Usefulness of Word Embedding Techniques in Deep Learning-Based Vulnerability Prediction | 2022 | Kalouptsoglou, Ilias |
Energy, QoS and Security Aware Edge Services | 2022 | Gelenbe, Erol |