Project AeroSense: Active On-Board Data Sampling to Derive Environmental Detection Models for Micro-Meteorological Anomaly Encounters
Gespeichert in:
Veröffentlicht in: | AIAA SciTech Forum and Exposition (2022 : San Diego, Calif.; Online) Digital avionics |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2022
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Titel | Jahr | Verfasser |
---|---|---|
A Machine Learning Model of a Pilot’s Visual Attention When Using Enhanced Flight Vision System | 2022 | Uwazuruonye, Kaosisochi |
Detect-And-Avoid Concepts and Their Applicability for sUAS Operation in VLL Airspace in the Vicinity of Airfields | 2022 | Huschbeck, Svenja |
Development and Validation of a Generic Engine Lubricating Oil Consumption Model for Environmental Impact Assessments | 2022 | Schuster, Eric |
Project AeroSense: Active On-Board Data Sampling to Derive Environmental Detection Models for Micro-Meteorological Anomaly Encounters | 2022 | Vettel, Jan |
Modeling of Aircraft Routes Under Severe Weather Conditions | 2022 | Nakamura, Yoichi |