Two Sides of Meta-Learning Evaluation: In vs. Out of Distribution

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeurIPS (35. : 2021 : Online) 35th Conference on Neural Information Processing Systems (NeurIPS 2021) ; Volume 5 of 36
1. Verfasser: Setlur, Amrith (VerfasserIn)
Weitere Verfasser: Li, Oscar (VerfasserIn), Smith, Virginia (VerfasserIn)
Pages:35
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2022
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
VigDet: Knowledge Informed Neural Temporal Point Process for Coordination Detection on Social Media 2022 Zhang, Yizhou
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks 2022 Wang, Jianhong
Towards Lower Bounds on the Depth of ReLU Neural Networks 2022 Hertrich, Christoph
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective 2022 Pleiss, Geoff
Exact marginal prior distributions of finite Bayesian neural networks 2022 Zavatone-Veth, Jacob
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization 2022 Ahuja, Kartik
Neural Auto-Curricula in Two-Player Zero-Sum Games 2022 Feng, Xidong
Tractable Regularization of Probabilistic Circuits 2022 Liu, Anji
On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness 2022 Mintun, Eric
Adversarial Robustness of Streaming Algorithms through Importance Sampling 2022 Braverman, Vladimir
Hypergraph Propagation and Community Selection for Objects Retrieval 2022 An, Guoyuan
Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic Besov space 2022 Suzuki, Taiji
Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation 2022 Hansen, Nicklas
Debiased Visual Question Answering from Feature and Sample Perspectives 2022 Wen, Zhiquan
On the Out-of-distribution Generalization of Probabilistic Image Modelling 2022 Zhang, Mingtian
Exploiting Local Convergence of Quasi-Newton Methods Globally: Adaptive Sample Size Approach 2022 Jin, Qiujiang
Celebrating Diversity in Shared Multi-Agent Reinforcement Learning 2022 Chenghao, Li
Unsupervised Motion Representation Learning with Capsule Autoencoders 2022 Xu, Ziwei
Exploring Forensic Dental Identification with Deep Learning 2022 Liang, Yuan
Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware Adversarial Training 2022 Cai, Yuanhao
Alle Artikel auflisten