SELF-PACED CONTRASTIVE LEARNING WITH HYBRID MEMORY FOR DOMAIN ADAPTIVE OBJECT RE-ID

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeurIPS (34. : 2020 : Online) 34th Conference on Neural Information Processing Systems (NeurIPS 2020) ; Volume 14 of 27
1. Verfasser: Ge, Yixiao (VerfasserIn)
Weitere Verfasser: Zhu, Feng (VerfasserIn), Chen, Dapeng (VerfasserIn), Zhao, Rui (VerfasserIn), Li, Hongsheng (VerfasserIn)
Pages:34
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
INCORPORATING BERT INTO PARALLEL SEQUENCE DECODING WITH ADAPTERS 2021 Guo, Junliang
GENERAL TRANSPORTABILITY OF SOFT INTERVENTIONS: COMPLETENESS RESULTS 2021 Correa, Juan
PROVABLY CONSISTENT PARTIAL-LABEL LEARNING 2021 Feng, Lei
MIX AND MATCH: AN OPTIMISTIC TREE-SEARCH APPROACH FOR LEARNING MODELS FROM MIXTURE DISTRIBUTIONS 2021 Faw, Matthew
VIME: EXTENDING THE SUCCESS OF SELF- AND SEMI-SUPERVISED LEARNING TO TABULAR DOMAIN 2021 Yoon, Jinsung
UNDERSTANDING DOUBLE DESCENT REQUIRES A FINE-GRAINED BIAS-VARIANCE DECOMPOSITION 2021 Adlam, Ben
SAMPLE-EFFICIENT OPTIMIZATION IN THE LATENT SPACE OF DEEP GENERATIVE MODELS VIA WEIGHTED RETRAINING 2021 Tripp, Austin
ADVERSARIAL ROBUSTNESS VIA ROBUST LOW RANK REPRESENTATIONS 2021 Awasthi, Pranjal
CORESETS FOR ROBUST TRAINING OF DEEP NEURAL NETWORKS AGAINST NOISY LABELS 2021 Mirzasoleiman, Baharan
METAPERTURB: TRANSFERABLE REGULARIZER FOR HETEROGENEOUS TASKS AND ARCHITECTURES 2021 Ryu, Jeong Un
PROBABILISTIC INFERENCE WITH ALGEBRAIC CONSTRAINTS: THEORETICAL LIMITS AND PRACTICAL APPROXIMATIONS 2021 Zeng, Zhe
IDENTIFYING CAUSAL-EFFECT INFERENCE FAILURE WITH UNCERTAINTY-AWARE MODELS 2021 Jesson, Andrew
LEARNING COMPOSITIONAL RULES VIA NEURAL PROGRAM SYNTHESIS 2021 Nye, Maxwell
ESTIMATING FLUCTUATIONS IN NEURAL REPRESENTATIONS OF UNCERTAIN ENVIRONMENTS 2021 Farhoodi, Sahand
DISCOVER, HALLUCINATE, AND ADAPT: OPEN COMPOUND DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION 2021 Park, Kwanyong
GAIT-PROP: A BIOLOGICALLY PLAUSIBLE LEARNING RULE DERIVED FROM BACKPROPAGATION OF ERROR 2021 Ahmad, Nasir
ROBUST, ACCURATE STOCHASTIC OPTIMIZATION FOR VARIATIONAL INFERENCE 2021 Dhaka, Akash Kumar
LEARNING SOME POPULAR GAUSSIAN GRAPHICAL MODELS WITHOUT CONDITION NUMBER BOUNDS 2021 Kelner, Jonathan
A DECENTRALIZED PARALLEL ALGORITHM FOR TRAINING GENERATIVE ADVERSARIAL NETS 2021 Liu, Mingrui
HYBRID VARIANCE-REDUCED SGD ALGORITHMS FOR MINIMAX PROBLEMS WITH NONCONVEX-LINEAR FUNCTION 2021 Dinh, Quoc Tran
Alle Artikel auflisten