A/B TESTING IN DENSE LARGE-SCALE NETWORKS: DESIGN AND INFERENCE

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeurIPS (34. : 2020 : Online) 34th Conference on Neural Information Processing Systems (NeurIPS 2020) ; Volume 4 of 27
1. Verfasser: Nandy, Preetam (VerfasserIn)
Weitere Verfasser: Basu, Kinjal (VerfasserIn), Chatterjee, Shaunak (VerfasserIn), Tu, Ye (VerfasserIn)
Pages:34
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
FALCON: FAST SPECTRAL INFERENCE ON ENCRYPTED DATA 2021 Lou, Qian
BAYESIAN ROBUST OPTIMIZATION FOR IMITATION LEARNING 2021 Brown, Daniel
BAYESIAN MULTI-TYPE MEAN FIELD MULTI-AGENT IMITATION LEARNING 2021 Yang, Fan
ASYMPTOTIC GUARANTEES FOR GENERATIVE MODELING BASED ON THE SMOOTH WASSERSTEIN DISTANCE 2021 Goldfeld, Ziv
FIGHTING COPYCAT AGENTS IN BEHAVIORAL CLONING FROM OBSERVATION HISTORIES 2021 Wen, Chuan
WEAKLY-SUPERVISED REINFORCEMENT LEARNING FOR CONTROLLABLE BEHAVIOR 2021 Lee, Lisa
DUAL INSTRUMENTAL VARIABLE REGRESSION 2021 Muandet, Krikamol
BIASED STOCHASTIC FIRST-ORDER METHODS FOR CONDITIONAL STOCHASTIC OPTIMIZATION AND APPLICATIONS IN META LEARNING 2021 Hu, Yifan
SHIFTADDNET: A HARDWARE-INSPIRED DEEP NETWORK 2021 You, Haoran
GEOMETRIC ALL-WAY BOOLEAN TENSOR DECOMPOSITION 2021 Wan, Changlin
ADVERSARIAL SELF-SUPERVISED CONTRASTIVE LEARNING 2021 Kim, Minseon
LAMINA-SPECIFIC NEURONAL PROPERTIES PROMOTE ROBUST, STABLE SIGNAL PROPAGATION IN FEEDFORWARD NETWORKS 2021 Han, Dongqi
A UNIVERSAL APPROXIMATION THEOREM OF DEEP NEURAL NETWORKS FOR EXPRESSING PROBABILITY DISTRIBUTIONS 2021 Lu, Yulong
MULTI-LABEL CLASSIFICATION: DO HAMMING LOSS AND SUBSET ACCURACY REALLY CONFLICT WITH EACH OTHER? 2021 Wu, Guoqiang
CAUSAL ANALYSIS OF COVID-19 SPREAD IN GERMANY 2021 Mastakouri, Atalanti
APPROXIMATION BASED VARIANCE REDUCTION FOR REPARAMETERIZATION GRADIENTS 2021 Geffner, Tomas
INFERENCE STAGE OPTIMIZATION FOR CROSS-SCENARIO 3D HUMAN POSE ESTIMATION 2021 Zhang, Jianfeng
PRACTICAL QUASI-NEWTON METHODS FOR TRAINING DEEP NEURAL NETWORKS 2021 Goldfarb, Donald
CONSISTENT FEATURE SELECTION FOR ANALYTIC DEEP NEURAL NETWORKS 2021 Dinh, Vu C.
INVERSE REINFORCEMENT LEARNING FROM A GRADIENT-BASED LEARNER 2021 Ramponi, Giorgia
Alle Artikel auflisten