Field guide to hyperspectral/multispectral image processing
Optical remote sensing -- Image data correction -- Image radiometric enhancement and display -- Image geometric enhancement -- Hyperspectral image data representation -- Image clustering and segmentation -- Handling limited numbers of training samples -- Feature reduction -- Incorporation of spatial...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Bellingham, Washington, USA
SPIE Press
2022
|
Schriftenreihe: | SPIE field guides
volume FG 52 |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical remote sensing -- Image data correction -- Image radiometric enhancement and display -- Image geometric enhancement -- Hyperspectral image data representation -- Image clustering and segmentation -- Handling limited numbers of training samples -- Feature reduction -- Incorporation of spatial information in pixel classification -- Subpixel analysis -- Artificial neural networks and deep learning with CNNs -- Multitemporal Earth observation -- Classification accuracy assessment. "Hyper/multispectral imagery in optical remote sensing is an extension of color RGB pictures. The utilized wavelength range is beyond the visible, up to the reflective shortwave infrared. Hyperspectral imaging offers higher spectral resolution, leading to many wavebands. The spectral profiles recorded reveal reflected solar radiation from the Earth surface materials when the sensor is mounted on an airborne or spaceborne platform. An inverse process using machine-learning approaches is conducted for target detection, material identification, and associated environmental applications, which is the main purpose of remote sensing. This Field Guide covers three areas: the fundamentals of remote sensing imaging for image understanding; image processing for correction and quality improvement; and image analysis for information extraction at subpixel, pixel, superpixel, and image levels, including feature mining and reduction. Basic concepts and fundamental understanding are emphasized to prepare the reader for exploring advanced methods"-- |
---|---|
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xiv, 103 Seiten |
ISBN: | 9781510652149 978-1-5106-5214-9 |