Two to Trust: AutoML for Safe Modelling and Interpretable Deep Learning for Robustness

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TAILOR Workshop (1. : 2020 : Online) Trustworthy AI - integrating learning, optimization and reasoning
1. Verfasser: Amirian, Mohammadreza (VerfasserIn)
Weitere Verfasser: Tuggener, Lukas (VerfasserIn), Chavarriaga, Ricardo (VerfasserIn), Satyawan, Yvan Putra (VerfasserIn), Schilling, Frank-Peter (VerfasserIn), Schwenker, Friedhelm (VerfasserIn), Stadelmann, Thilo (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Assessment of Manifold Unfolding in Trained Deep Neural Network Classifiers 2021 Pócoš, Stefan
Election Manipulation on Social Networks with Messages on Multiple Candidates Extended Abstract 2021 Castiglioni, Matteo
Al-Supported Innovation Monitoring 2021 Braaksma, Barteld
Transparent Adaptation in Deep Medical Image Diagnosis 2021 Kollias, D.
Semi-supervised Co-ensembling for AutoML 2021 Engelen, Jesper E. van
Two to Trust: AutoML for Safe Modelling and Interpretable Deep Learning for Robustness 2021 Amirian, Mohammadreza
Underestimation Bias and Underfitting in Machine Learning 2021 Cunningham, Pádraig
Safe Learning and Optimization Techniques: Towards a Survey of the State ofthe Art 2021 Kim, Youngmin
Towards Automated GDPR Compliance Checking 2021 Libal, Tomer
Hybrid AI: The Way Forward in AI by Developing Four Dimensions 2021 Huizing, Albert
Lab Conditions for Research on Explainable Automated Decisions 2021 Baier, Christel
An Analysis of Regularized Approaches for Constrained Machine Learning 2021 Lombardi, Michele
A Causal Framework for Understanding Optimisation Algorithms 2021 Franzin, Alberto
Value-Alignment Equilibrium in Multiagent Systems 2021 Montes, Nieves
Uncertainty Quantification and Calibration of Imitation Learning Policy in Autonomous Driving 2021 Nozarian, Farzad
Synthesising Reinforcement Learning Policies Through Set-Valued Inductive Rule Learning 2021 Coppens, Youri
Consensus for Collaborative Creation of Risk Maps for COVID-19 2021 Rebollo, M.
Guided-LORE: Improving LORE with a Focused Search of Neighbours 2021 Maaroof, Najlaa
Towards Certifying Trustworthy Machine Learning Systems 2021 Yap, Roland H. C.
Interactive Natural Language Technology for Explainable Artificial Intelligence 2021 Alonso, Jose M.
Alle Artikel auflisten