ROOT MEAN SQUARE LAYER NORMALIZATION

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeurIPS (33. : 2019 : Vancouver, British Columbia) 32nd Conference on Neural Information Processing Systems (NeurIPS 2019) ; Volume 16 of 20
1. Verfasser: Zhang, Biao (VerfasserIn)
Weitere Verfasser: Sennrich, Rico (VerfasserIn)
Pages:32
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
SIC-MMAB: SYNCHRONISATION INVOLVES COMMUNICATION IN MULTIPLAYER MULTI-ARMED BANDITS 2020 Boursier, Etienne
IMPROVED REGRET BOUNDS FOR BANDIT COMBINATORIAL OPTIMIZATION ............. 2020 Ito, Shinji
A DOMAIN AGNOSTIC MEASURE FOR MONITORING AND EVALUATING GANS ........... 2020 Grnarova, Paulina
MODELLING THE DYNAMICS OF MULTIAGENT Q-LEARNING IN REPEATED SYMMETRIC GAMES: A MEAN FIELD THEORETIC APPROACH 2020 Hu, Shuyue
INTEGER DISCRETE FLOWS AND LOSSLESS COMPRESSION 2020 Hoogeboom, Emiel
ROOT MEAN SQUARE LAYER NORMALIZATION 2020 Zhang, Biao
UNIVERSALITY IN LEARNING FROM LINEAR MEASUREMENTS 2020 Abbasi, Ehsan
PLANNING IN ENTROPY-REGULARIZED MARKOV DECISION PROCESSES AND GAMES 2020 Grill, Jean-Bastien
R2D2: RELIABLE AND REPEATABLE DETECTOR AND DESCRIPTOR 2020 Revaud, Jerome
SELECTIVE SAMPLING-BASED SCALABLE SPARSE SUBSPACE 2020 Matsushima, Shin
A GENERAL FRAMEWORK FOR SYMMETRIC PROPERTY ESTIMATION 2020 Charikar, Moses
CONTINUOUS HIERARCHICAL REPRESENTATIONS WITH POINCARÉ VARIATIONAL AUTO-ENCODERS 2020 Mathieu, Emile
A GENERIC ACCELERATION FRAMEWORK FOR STOCHASTIC COMPOSITE OPTIMIZATION 2020 Kulunchakov, Andrei
RANDOM QUADRATIC FORMS WITH DEPENDENCE: APPLICATIONS TO RESTRICTED ISOMETRY AND BEYOND 2020 Banerjee, Arindam
METAINIT: INITIALIZING LEARNING BY LEARNING TO INITIALIZE 2020 Dauphin, Yann N.
THE IMPACT OF REGULARIZATION ON HIGH-DIMENSIONAL LOGISTIC REGRESSION ............. 2020 Salehi, Fariborz
PARETO MULTI-TASK LEARNING 2020 Lin, Xi
SUBMODULAR FUNCTION MINIMIZATION WITH NOISY EVALUATION ORACLE 2020 Ito, Shinji
ARE LABELS REQUIRED FOR IMPROVING ADVERSARIAL ROBUSTNESS? 2020 Alayrac, Jean-Baptiste
THEORETICAL ANALYSIS OF ADVERSARIAL LEARNING: A MINIMAX APPROACH 2020 Tu, Zhuozhuo
Alle Artikel auflisten