How Few Annotations are Needed for Segmentation Using a Multi-planar U-Net?

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DGM4MICCAI (1. : 2021 : Online) Deep Generative Models, and Data Augmentation, Labelling, and Imperfections
1. Verfasser: Laprade, William Michael (VerfasserIn)
Weitere Verfasser: Perslev, Mathias (VerfasserIn), Sporring, Jon (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
CT-SGAN: Computed Tomography Synthesis GAN 2021 Pesaranghader, Ahmad
Evaluating GANSs in Medical Imaging 2021 Tronchin, Lorenzo
Cross-Domain Landmarks Detection in Mitral Regurgitation 2021 Wang, Jiacheng
Improved Heatmap-Based Landmark Detection 2021 Yao, Huifeng
Scalable Semi-supervised Landmark Localization for X-ray Images Using Few-Shot Deep Adaptive Graph 2021 Zhou, Xiao-Yun
Data Augmentation with Variational Autoencoders and Manifold Sampling 2021 Chadebec, Clement
Compound Figure Separation of Biomedical Images with Side Loss 2021 Yao, Tianyuan
FS-Net: A New Paradigm of Data Expansion for Medical Image Segmentation 2021 Guo, Xutao
Hierarchical Probabilistic Ultrasound Image Inpainting via Varjational Inference 2021 Hung, Alex Ling Yu
CaCL: Class-Aware Codebook Learning for Weakly Supervised Segmentation on Diffuse Image Patterns 2021 Deng, Ruining
Medical Image Segmentation with Imperfect 3D Bounding Boxes 2021 Redekop, Ekaterina
Evaluation of Active Learning Techniques on Medical Image Classification with Unbalanced Data Distributions 2021 Chong, Quok Zong
An Effcient Data Strategy for the Detection of Brain Aneurysms from MRA with Deep Learning 2021 Assis, Youssef
Zero-Shot Domain Adaptation in CT Segmentation by Filtered Back Projection Augmentation 2021 Saparov, Talgat
Label Noise in Segmentation Networks: Mitigation Must Deal with Bias 2021 Vorontsov, Eugene
MetaHistoSeg: A Python Framework for Meta Learning in Histopathology Image Segmentation 2021 Yuan, Zheng
Frequency-Supervised MR-to-CT Image Synthesis 2021 Shi, Zenglin
Bridging the Gap Between Paired and Unpaired Medical Image Translation 2021 Paavilainen, Pauliina
3D-StyleGAN: A Style-Based Generative Adversarial Network for Generative Modeling of Three-Dimensional Medical Images 2021 Hong, Sungmin
How Few Annotations are Needed for Segmentation Using a Multi-planar U-Net? 2021 Laprade, William Michael
Alle Artikel auflisten