Machine Leaming for Fraud Detection in E-Commerce: A Research Agenda
Gespeichert in:
Veröffentlicht in: | International Workshop on Deployable Machine Learning for Security Defense (2. : 2021 : Online) Deployable Machine Learning for Security Defense |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2021
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Titel | Jahr | Verfasser |
---|---|---|
STAN: Synthetic Network Traffic Generation with Generative Neural Models | 2021 | Xu, Shengzhe |
Few-Sample Named Entity Recognition for Security Vulnerability Reports by Fine-Tuning Pre-trained Language Models | 2021 | Yang, Guanqun |
A Survey on Common Threats in npm and PyPi Registries | 2021 | Kaplan, Berkay |
Machine Leaming for Fraud Detection in E-Commerce: A Research Agenda | 2021 | Tax, Niek |
DExRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode | 2021 | Daoudi, Nadia |
Attacks on Visualization-Based Malware Detection: Balancing Effectiveness and Executability | 2021 | Benkraouda, Hadjer |