Learning Uncertainty with Artificial Neural Networks for Improved Remaining Time Prediction of Business Processes

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BPM (Veranstaltung : 19. : 2021 : Rom; Online) Business process management
1. Verfasser: Weytjens, Hans (VerfasserIn)
Weitere Verfasser: Weerdt, Jochen De (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Applications of Automated Planning for Business Process Management 2021 Marrella, Andrea
Artifact-Driven Process Monitoring: A Viable Solution to Continuously and Autonomously Monitor Business Processes 2021 Meroni, Giovanni
A Method for Debugging Process Discovery Pipelines to Analyze the Consistency of Model Properties 2021 Klinkmüller, Christopher
Extracting Decision Models from Textual Descriptions of Processes 2021 Quishpi, Luis
Incremental Predictive Process Monitoring: The Next Activity Case 2021 Pauwels, Stephen
Delta-BPMN: A Concrete Language and Verifier for Data-Aware BPMN 2021 Ghilardi, Silvio
Zoom and Enhance: Action Refinement via Subprocesses in Timed Declarative Processes 2021 Normann, Håkon
A Robust and Accurate Approach to Detect Process Drifts from Event Streams 2021 Lu, Yang
Drivers and Barriers of the Digital Innovation Process — Case Study Insights from a German Public University 2021 Kleider, Emil
Graph Autoencoders for Business Process Anomaly Detection 2021 Huo, Siyu
A Stakeholder Engagement Model for Process Improvement Initiatives 2021 Abbott, Charon
Cognitive Effectiveness of Representations for Process Mining 2021 Mendling, Jan
RuM: Declarative Process Mining, Distilled 2021 Alman, Anti
Robust and Generalizable Predictive Models for Business Processes 2021 Venkateswaran, Praveen
Weighing the Pros and Cons: Process Discovery with Negative Examples 2021 Slaats, Tijs
Learning Uncertainty with Artificial Neural Networks for Improved Remaining Time Prediction of Business Processes 2021 Weytjens, Hans
Aligning Data-Aware Declarative Process Models and Event Logs 2021 Bergami, Giacomo
From Symbolic RPA to Intelligent RPA: Challenges for Developing and Operating Intelligent Software Robots 2021 Herm, Lukas-Valentin
Multivariate Business Process Representation Learning Utilizing Gramian Angular Fields and Convolutional Neural Networks 2021 Pfeiffer, Peter
A Framework for Explainable Concept Drift Detection in Process Mining 2021 Adams, Jan Niklas
Alle Artikel auflisten