Designing an Efficient Gradient Descent Based Heuristic for Clusterwise Linear Regression for Large Datasets

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Data Science, Technology and Applications (9. : 2020 : Online) Data Management Technologies and Applications
1. Verfasser: Kayış, Enis (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Intelligent Public Procurement Monitoring System Powered by Text Mining and Balanced Indicators 2021 Modrušan, Nikola
A Policy-Agnostic Programming Language for the International Data Spaces 2021 Pampus,, Fabian Bruckner, Julia
Algebraic Expressions with State Constraints for Causal Relations and Data Semantics 2021 Yamasaki, Susumu
Efficient Scheduling of Scientific Workflow Actions in the Cloud Based on Required Capabilities 2021 Krämer, Michel
Catalog Integration of Heterogeneous and Volatile Product Data 2021 Schmidts, Oliver
Coreset-Based Data Compression for Logistic Regression 2021 Riquelme-Granada, Nery
Removing Operational Friction Using Process Mining: Challenges Provided by the Internet of Production (IoP) 2021 Aalst, Wil M. P. van der
iTLM-Q: A Constraint-Based Q-Learning Approach for Intelligent Traffic Light Management 2021 Roth, Christian
Open Data in the Enterprise Context: Assessing Open Corporate Data’s Readiness for Use 2021 Krasikov, Pavel
Product Classification Using Partially Abbreviated Product Names, Brands and Dimensions 2021 Allweyer, Oliver
A Data Science Approach to Explain a Complex Team Ball Game 2021 Schwenkreis, Friedemann
Designing an Efficient Gradient Descent Based Heuristic for Clusterwise Linear Regression for Large Datasets 2021 Kayış, Enis
An Environmental Study of French Neighbourhoods 2021 Barret, Nelly
Phenomena Explanation from Text: Unsupervised Learning of Interpretable and Statistically Significant Knowledge 2021 Frisoni, Giacomo
Alle Artikel auflisten