A Generalized Quadratic Loss for SVM and Deep Neural Networks

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:LOD (6. : 2020 : Online) Machine learning, optimization, and data science ; Part 1
1. Verfasser: Portera, Filippo (VerfasserIn)
Pages:1
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Using Hessians as a Regularization Technique 2020 Rahimi, Adel
Methods for Hyperparameters Optimization in Learning Approaches: An Overview 2020 Buono, Nicoletta Del
Novel Reconstruction Errors for Saliency Detection in Hyperspectral Images 2020 Falini, Antonella
Learning More Expressive Joint Distributions in Multimodal Variational Methods 2020 Nedelkoski, Sasho
Estimating the F1 Score for Learning from Positive and Unlabeled Examples 2020 Tabatabaei, Seyed Amin
Sparse Consensus Classification for Discovering Novel Biomarkers in Rheumatoid Arthritis 2020 Constantino, Cláudia
Using the GDELT Dataset to Analyse the Italian Sovereign Bond Market 2020 Consoli, Sergio
Investigating the Compositional Structure of Deep Neural Networks 2020 Craighero, Francesco
CMAC: Clustering Class Association Rules to Form a Compact and Meaningful Associative Classifier 2020 Mattiev, Jamolbek
A Krill Herd Algorithm for the Multiobjective Energy Reduction Multi-Depot Vehicle Routing Problem 2020 Rapanaki, Emmanouela
Optimal Broadcast Strategy in Homogeneous Point-to-Point Networks 2020 Robledo, Franco
A General Approach for Risk Controlled Trading Based on Machine Learning and Statistical Arbitrage 2020 Carta, Salvatore
A New Approach to Early Warning Systems for Small European Banks 2020 Bräuning, Michael
Global Convergence of Sobolev Training for Overparameterized Neural Networks 2020 Cocola, Jorio
Robust Generative Restricted Kernel Machines Using Weighted Conjugate Feature Duality 2020 Pandey, Arun
Caching Suggestions Using Reinforcement Learning 2020 Tracolli, Mirco
Unit Propagation by Means of Coordinate-Wise Minimization 2020 Dlask, Tomáš
Revisiting Clustering as Matrix Factorisation on the Stiefel Manifold 2020 Chrétien, Stéphane
Should Simplicity Be Always Preferred to Complexity in Supervised Machine Learning? 2020 Bargagli-Stoffi, Falco
The Role of Animal Spirit in Monitoring Location Shifts with SVM: Novelties Versus Outliers 2020 Igescu, Iulia
Alle Artikel auflisten