Heuristic Learning in Domain-Independent Planning: Theoretical Analysis and Experimental Evaluation

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICAART (12. : 2020 : Valletta) Agents and artificial intelligence
1. Verfasser: Trunda, Otakar (VerfasserIn)
Weitere Verfasser: Barták, Roman (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Intelligent Local Energy Communities: A Multiagent System Approach 2021 Denysiuk, Roman
Herd Behavior Is Sufficient to Reproduce Human Evacuation Decisions During the Great East Japan Earthquake 2021 Tsurushima, Akira
Blending NLP and Machine Learning for the Development of Winograd Schemas 2021 Isaak, Nicos
Choose Your Words Wisely: Leveraging Embedded Dialog Trajectories to Enhance Performance in Open-Domain Conversations 2021 Fulda, Nancy
Cognitive Map Query Language for Temporal Domains 2021 Robert, Adrian
Knowledge Injection to Neural Networks with Progressive Learning Strategy 2021 Nguyen, Ha Thanh
Designing New Data Replication Strategies Automatically 2021 Bokhari, Syed Mohtashim Abbas
A Multi-modal Audience Engagement Measurement System 2021 Sanz-Narrillos, Miguel
Unsupervised Feature Value Selection Based on Explainability 2021 Shin, Kilho
Continuous Multi-agent Path Finding via Satisfiability Modulo Theories (SMT) 2021 Surynek, Pavel
Learning Latent Variable Models with Discriminant Regularization 2021 Peng, Jing
Reducing the Need for Manual Annotated Datasets in Aspect Sentiment Classification by Transfer Learning and Weak-Supervision 2021 Oro, Ermelinda
Quantifying Gaze-Based Strategic Patterns in Physics Field Vector Divergence 2021 Mozaffari, Saleh
Economic and Food Safety: Optimized Inspection Routes Generation 2021 Barros, Telmo
A Game-Theoretical Incentive Mechanism for Local Energy Communities 2021 Lilliu, Fabio
Time Matters: Exploring the Effects of Urgency and Reaction Speed in Automated Traders 2021 Hanifan, Henry
Cost-Sensitive Semi-supervised Classification for Fraud Applications 2021 Elshaar, Sulaf
A Scalable and Automated Machine Learning Framework to Support Risk Management 2021 Ferreira, Luis
Trading Bias for Expressivity in Artificial Learning 2021 Montañez, George D.
On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters 2021 Smyrnakis, Michalis
Alle Artikel auflisten