Are Pathologist-Defined Labels Reproducible? Comparison of the TUPAC16 Mitotic Figure Dataset with an Alternative Set of Labels

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iMIMIC (3. : 2020 : Online) Interpretable and annotation-efficient learning for medical image computing
1. Verfasser: Bertram, Christof A. (VerfasserIn)
Weitere Verfasser: Veta, Mitko (VerfasserIn), Marzahl, Christian (VerfasserIn), Stathonikos, Nikolas (VerfasserIn), Maier, Andreas (VerfasserIn), Klopfleisch, Robert (VerfasserIn), Aubreville, Marc (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Improving the Performance and Explainability of Mammogram Classifiers with Local Annotations 2020 Ness, Lior
Reliable Saliency Maps for Weakly-Supervised Localization of Disease Patterns 2020 Möller, Maximilian
Explainability for Regression CNN in Fetal Head Circumference Estimation from Ultrasound Images 2020 Zhang, Jing
Explainable Disease Classification via Weakly-Supervised Segmentatation 2020 Joshi, Aniket
Transfer Learning with Joint Optimization for Label-Efficient Medical Image Anomaly Detection 2020 Li, Xintong
Risk of Training Diagnostic Algorithms on Data with Demographic Bias 2020 Abbasi-Sureshjani, Samaneh
Labelling Imaging Datasets on the Basis of Neuroradiology Reports: A Validation Study 2020 Wood, David A.
Paying Per-Label Attention for Multi-label Extraction from Radiology Reports 2020 Schrempf, Patrick
Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins 2020 Cicek, Ozgiin
COMe-SEE: Cross-modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs 2020 Paul, Angshuman
Semi-supervised Machine Learning with MixMatch and Equivalence Classes 2020 Hansen, Colin B.
HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification 2020 Bashir, Raja Muhammad Saad
Semi-weakly Supervised Learning for Prostate Cancer Image Classification with Teacher-Student Deep Convolutional Networks 2020 Otálora, Sebastian
EasierPath: An Open-Source Tool for Human-in-the-Loop Deep Learning of Renal Pathology 2020 Zhu, Zheyu
Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection 2020 Li, Chao-Ting
Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging 2020 Graziani, Mara
Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation 2020 Liu, Han
Non-contrast CT Liver Segmentation Using CycleGAN Data Augmentation from Contrast Enhanced CT 2020 Song, Chongchong
Are Pathologist-Defined Labels Reproducible? Comparison of the TUPAC16 Mitotic Figure Dataset with an Alternative Set of Labels 2020 Bertram, Christof A.
Predicting Scores of Medical Imaging Segmentation Methods with Meta-learning 2020 Sonsbeek, Tom van
Alle Artikel auflisten