Improving Active Attitude for Interactive Decision-making with Multiple Agents by Increasing Personal Resource

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICAART (13. : 2021 : Online) ICAART 2021 ; Volume 1
1. Verfasser: Ohmoto, Yoshimasa (VerfasserIn)
Weitere Verfasser: Kuno, Masato (VerfasserIn), Nishida, Toyoaki (VerfasserIn)
Pages:2021
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Con Espressione! AI, Machine Learning, and Musical Expressivity 2021 Widmer, Gerhard
Imperfect Oracles: The Effect of Strategic Information on Stock Markets 2021 Borsi, Miklos
Evaluating Correlations in IoT Sensors for Smart Buildings 2021 Guastella, Davide Andrea
Network Topology Identification using Supervised Pattern Recognition Neural Networks 2021 Perumalla, Aniruddha
Mixed Reference Interpretation in Multi-turn Conversation 2021 Otake, Nanase
Maintaining Organizational Multi-agent Systems: A Reorganization-based Preventive Approach 2021 Ghrieb, Nawel
Heterogeneous Preferences and Patterns of Contribution in Cybersecurity as a Public Good 2021 Kianpour, Mazaher
A Local Active Learning Strategy by Cooperative Multi-Agent Systems 2021 Dato, Bruno
Towards a Model of Empathic Pedagogical Agent for Educating Children and Teenagers on Good Practices in the Use of Social Networks 2021 Taverner, Joaquin
Integrating Shared Information into the Sensorial Mapping of Connected and Autonomous Vehicles 2021 Perotto, Filipo Studzinski
Augmented Spanish-Persian Neural Machine Translation 2021 Ahmadnia, Benyamin
Aspect Based Sentiment Analysis using French Pre-Trained Models 2021 Essebbar, Abderrahman
Memory State Tracker: A Memory Network based Dialogue State Tracker 2021 Wang, Di
Scene Detection in De Boer Historical Photo Collection 2021 Wevers, Melvin
Explainable Machine Learning for Trustworthy AI 2021 Giannotti, Fosca
From Probabilistic Circuits to Probabilistic Programs and Back 2021 Broeck, Guy Van den
Let's Do the Time Warp Again: Human Action Assistance for Reinforcement Learning Agents 2021 Burn, Carter B.
Multi-Agent Goal Reasoning with the CLIPS Executive in the RoboCup Logistics League 2021 Hofmann, Lill
Mixed Deep Reinforcement Learning-behavior Tree for Intelligent Agents Design 2021 Li, Lei
A Study on Negotiation for Revealed Information with Decentralized Asymmetric Multi-objective Constraint Optimization 2021 Matsui, Toshihiro
Alle Artikel auflisten