A Multi-view Ensemble of Deep Models for the Detection of Deviant Process Instances

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECML PKDD (5. : 2020 : Online) ECML PKDD 2020 Workshops
1. Verfasser: Folino, Francesco (VerfasserIn)
Weitere Verfasser: Folino, Gianluigi (VerfasserIn), Guarascio, Massimo (VerfasserIn), Pontieri, Luigi (VerfasserIn)
Pages:2020
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
On Modeling Labor Markets for Fine-Grained Insights 2020 Sugiarto, Hendrik Santoso
Data Decomposition Based Learning for Load Time-Series Forecasting 2020 Bedi, Jatin
A Left Realist Critique of the Political Value of Adopting Machine Learning Systems in Criminal Justice 2020 Zennaro, Fabio Massimo
Leveraging Multi-target Regression for Predicting the Next Parallel Activities in Event Logs 2020 Ceci, Michelangelo
Interpretable Machine Learning — A Brief History, State-of-the-Art and Challenges 2020 Molnar, Christoph
LimeOut: An Ensemble Approach to Improve Process Fairness 2020 Bhargava, Vaishnavi
What Would You Ask the Machine Learning Model? Identification of User Needs for Model Explanations Based on Human-Model Conversations 2020 Kuźba, Michał
Approximate Explanations for Classification of Histopathology Patches 2020 Sousa, lam Palatnik de
Prediction and Explanation of Privacy Risk on Mobility Data with Neural Networks 2020 Naretto, Francesca
Monitoring Technoscientific Issues in the News 2020 Cammozzo, Alberto
Multi-stakeholder News Recommendation Using Hypergraph Learning 2020 Gharahighehi, Alireza
Reasoning About Neural Network Activations: An Application in Spatial Animal Behaviour from Camera Trap Classifications 2020 Evans, Benjamin C.
A Hybrid Recommendation System Based on Bidirectional Encoder Representations 2020 Islek, Irem
A Multi-view Ensemble of Deep Models for the Detection of Deviant Process Instances 2020 Folino, Francesco
Exploiting Temporal Convolution for Activity Prediction in Process Analytics 2020 Folino, Francesco
Group-Specific Training Data 2020 Busath, Ben
Scalable Blocking for Very Large Databases 2020 Borthwick, Andrew
Towards Better Evaluation of Multi-target Regression Models 2020 Korneva, Evgeniya
Assessing the Difficulty of Labelling an Instance in Crowdworking 2020 Jambigi, Neetha
Efficient Estimation of General Additive Neural Networks: A Case Study for CTG Data 2020 Lisboa, P. J. G.
Alle Artikel auflisten