The Random Neural Network as a Bonding Model for Software Vulnerability Prediction

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MASCOTS (28. : 2020 : Online) Modelling, analysis, and simulation of computer and telecommunication systems
1. Verfasser: Filus, Katarzyna (VerfasserIn)
Weitere Verfasser: Siavvas, Miltiadis (VerfasserIn), Domanska, Joanna (VerfasserIn), Gelenbe, Erol (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Performance, Energy Savings and Security: An Introduction 2021 Caglayan, Ufuk
Software Defined Network Dynamics via Diffusions 2021 Czachórski, Tadeusz
Contact Holdups and Their Impact for Overlay Delay Tolerant Networks 2021 Lent, Ricardo
Measuring Performance of Fault Management in a Legacy System: An Alarm System Study 2021 Tomak, Juri
Measurement and Modeling of Tumblr Traffic 2021 Mclean, Rachel
Tail Latency in Datacenter Networks 2021 Althoubi, Assad
Performance Evaluation of the Packet Aggregation Mechanism of an N-GREEN Metro Network Node 2021 Atmaca, Tülin
Non-neutrality with Users Deciding Differentiation: A Satisfying Option? 2021 Kieffer, Anne
QUIC Throughput and Fairness over Dual Connectivity 2021 Hasselquist, David
LP WAN Gateway Location Selection Using Modified K-Dominating Set Algorithm 2021 Frankiewicz, Artur
Network Traffic Classification Using WiFi Sensing 2021 Li, Junye
Hypothesis-Based Comparison of IPv6 and IPv4 Path Distances 2021 Hasselquist, David
Toolset for Run-Time Dataset Collection of Deep-Scene Information 2021 Aaro, Gustav
Random Neural Network for Lightweight Attack Detection in the IoT 2021 Filus, Katarzyna
The Random Neural Network as a Bonding Model for Software Vulnerability Prediction 2021 Filus, Katarzyna
SHAMan: A Flexible Framework for Auto-tuning HPC Systems 2021 Robert, Sophie
Balanced Gray Codes for Reduction of Bit-Flips in Phase Change Memories 2021 Kulandai, Arockia David Roy
Alle Artikel auflisten