Iteratively Refine the Segmentation of Head and Neck Tumor in FDG-PET and CT Images

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:HECKTOR (1. : 2020 : Online) Head and neck tumor segmentation
1. Verfasser: Chen, Huai (VerfasserIn)
Weitere Verfasser: Chen, Haibin (VerfasserIn), Wang, Lisheng (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Automatic Head and Neck Tumor Segmentation in PET/CT with Scale Attention Network 2021 Yuan, Yading
Iteratively Refine the Segmentation of Head and Neck Tumor in FDG-PET and CT Images 2021 Chen, Huai
Combining CNN and Hybrid Active Contours for Head and Neck Tumor segmentation in CT and PET Images 2021 Ma, Jun
Oropharyngeal Tumour Segmentation Using Ensemble 3D PET-CT Fusion Networks for the HECKTOR Challenge 2021 Rao, Chinmay
Tumor Segmentation in Patients with Head and Neck Cancers Using Deep Learning Based-on Multi-modality PET/CT Images 2021 Naser, T" Mohamed A.
Overview of the HECKTOR Challenge at MICCAI 2020: Automatic Head and Neck Tumor Segmentation in PET/CT 2021 Andrearczyk, Vincent
Two-Stage Approach for Segmenting Gross Tumor Volume in Head and Neck Cancer with CT and PET Imaging 2021 Zhu, Simeng
The Head and Neck Tumor Segmentation Using nnU-Net with Spatial and Channel ‘Squeeze & Excitation’ Blocks 2021 Xie, Juanying
Squeeze-and-Excitation Normalization for Automated Delineation of Head and Neck Primary Tumors in Combined PET and CT Images 2021 lantsen, Andrei
GAN-Based Bi-Modal Segmentation Using Mumford-Shah Loss: Application to Head and Neck Tumors in PET-CT Images 2021 Yousefirizi, Fereshteh
Patch-Based 3D UNet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions 2021 Ghimire, Kanchan
Alle Artikel auflisten