FraudFox: Adaptable Fraud Detection in the Real World
Gespeichert in:
Veröffentlicht in: | MLHat (1. : 2020 : Online) Deployable machine learning for security defense |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2020
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Titel | Jahr | Verfasser |
---|---|---|
MALOnt: An Ontology for Malware Threat Intelligence | 2020 | Rastogi, Nidhi |
Toward Explainable and Adaptable Detection and Classification of Distributed Denial-of-Service Attacks | 2020 | Feng, Yebo |
A Large-Scale Analysis of Attacker Activity in Compromised Enterprise Accounts | 2020 | Shah, Neil |
DAPT 2020 - Constructing a Benchmark Dataset for Advanced Persistent Threats | 2020 | Myneni, Sowmya |
FraudFox: Adaptable Fraud Detection in the Real World | 2020 | Butler, Matthew |
Towards Practical Robustness Improvement for Object Detection in Safety-Critical Scenarios | 2020 | Hu, Zhisheng |
Forecasting Network Intrusions from Security Logs Using LSTMs | 2020 | Mueller, W. Graham |
Domain Generation Algorithm Detection Utilizing Model Hardening Through GAN-Generated Adversarial Examples | 2020 | Gould, Nathaniel |