Learner-Independent Targeted Data Omission Attacks
Gespeichert in:
Veröffentlicht in: | EDSMLS (3. : New York, NY : 2020) Engineering dependable and secure machine learning systems |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2020
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Titel | Jahr | Verfasser |
---|---|---|
Learner-Independent Targeted Data Omission Attacks | 2020 | Barash, Guy |
Extraction of Complex DNN Models: Real Threat or Boogeyman? | 2020 | Atli, Buse Gul |
Automated Detection of Drift in Deep Learning Based Classifiers Performance Using Network Embeddings | 2020 | Dube, Parijat |
Dependable Neural Networks for Safety Critical Tasks | 2020 | O’Brien, Molly |
Quality Management of Machine Learning Systems | 2020 | Santhanam, P. |
Principal Component Properties of Adversarial Samples | 2020 | Jere, Malhar |
Can Attention Masks Improve Adversarial Robustness? | 2020 | Vaishnavi, Pratik |
FreaAl: Automated Extraction of Data Slices to Test Machine Learning Models | 2020 | Ackerman, Samuel |
Density Estimation in Representation Space to Predict Model Uncertainty | 2020 | Ramalho, Tiago |
Quality of Syntactic Implication of RL-Based Sentence Summarization | 2020 | Le, Hoa T. |