A Synthetic Supplemental Public Use File of Low-Income Information Return Data: Methodology, Utility, and Privacy Implications

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PSD (2020 : Online) Privacy in statistical databases
1. Verfasser: Bowen, Claire McKay (VerfasserIn)
Weitere Verfasser: Bryant, Victoria (VerfasserIn), Burman, Leonard (VerfasserIn), Khitatrakun, Surachai (VerfasserIn), McClelland, Robert (VerfasserIn), Stallworth, Philip (VerfasserIn), Ueyama, Kyle (VerfasserIn), Williams, Aaron R. (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
P α,β-Privacy: A Composable Formulation of Privacy Guarantees for Data Publishing Based on Permutation 2020 Ruiz, Nicolas
A Partitioned Recoding Scheme for Privacy Preserving Data Publishing 2020 Clifton, Chris
Multivariate Top-Coding for Statistical Disclosure Limitation 2020 Oganian, Anna
A Synthetic Supplemental Public Use File of Low-Income Information Return Data: Methodology, Utility, and Privacy Implications 2020 Bowen, Claire McKay
Integrating Differential Privacy in the Statistical Disclosure Control Tool-Kit for Synthetic Data Production 2020 Shlomo, Natalie
A Bayesian Nonparametric Approach to Differentially Private Data 2020 Ayed, Fadhel
Utility-Enhancing Flexible Mechanisms for Differential Privacy 2020 Mugunthan, Vaikkunth
Analysis of Differentially-Private Microdata Using SIMEX 2020 Charest, Anne-Sophie
Calculation of Risk Probabilities for the Cell Key Method 2020 Enderle, Tobias
Statistical Disclosure Control When Publishing on Thematic Maps 2020 Hut, Douwe
Advantages of Imputation vs. Data Swapping for Statistical Disclosure Control 2020 Kinney, Satkartar K.
Differential Privacy and Its Applicability for Official Statistics in Japan – A Comparative Study Using Small Area Data from the Japanese Population Census 2020 Ito, Shinsuke
ε-Differential Privacy for Microdata Releases Does Not Guarantee Confidentiality (Let Alone Utility) 2020 Muralidhar, Krishnamurty
Explaining Recurrent Machine Learning Models: Integral Privacy Revisited 2020 Torra, Vicenç
Plausible Deniability 2020 Sidi, David
Privacy Analysis of Query-Set-Size Control 2020 Nussbaum, Eyal
On Different Formulations of a Continuous CTA Model 2020 Lesaja, Goran
Detecting Bad Answers in Survey Data Through Unsupervised Machine Learning 2020 Jebreel, Najeeb Moharram
Disclosure Avoidance in the Census Bureau’s 2010 Demonstration Data Product 2020 Riper, David Van
Private Posterior Inference Consistent with Public Information: A Case Study in Small Area Estimation from Synthetic Census Data 2020 Seeman, Jeremy
Alle Artikel auflisten