Extreme-SAX: Extreme Points Based Symbolic Representation for Time Series Classification

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DaWaK (22. : 2020 : Bratislava; Online) Big data analytics and knowledge discovery
1. Verfasser: Fuad, Muhammad Marwan Muhammad (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
DHE2: Distributed Hybrid Evolution Engine for Performance Optimizations of Computationally Intensive Applications 2020 Stroie, Oana
Reverse Engineering Approach for NoSQL Databases 2020 Abdelhedi, Fatma
Derivative, Regression and Time Series Analysis in SARS-CoV-2 2020 Furtado, Pedro
Multivariate Time Series Classification: A Relational Way 2020 Gay, Dominique
Learning from Past Observations: Meta-Learning for Efficient Clustering Analyses 2020 Fritz, Manuel
Extreme-SAX: Extreme Points Based Symbolic Representation for Time Series Classification 2020 Fuad, Muhammad Marwan Muhammad
Data Engineering for Data Science: Two Sides of the Same Coin 2020 Romero, Oscar
Mining Attribute Evolution Rules in Dynamic Attributed Graphs 2020 Fournier-Viger, Philippe
Mining Frequent Seasonal Gradual Patterns 2020 Lonlac, Jerry
Contrastive Explanations for a Deep Learning Model on Time-Series Data 2020 Labaien, Jokin
Sustainable Development Goal Relational Modelling: Introducing the SDG-CAP Methodology 2020 Alharbi, Yassir
Cyberbullying Detection in Social Networks Using Deep Learning Based Models 2020 Dadvar, Maral
Parallel K-Prototypes Clustering with High Efficiency and Accuracy 2020 Jridi, Hiba
Analyzing the Research Landscape of DaWaK Papers from 1999 to 2019 2020 Timakum, Tatsawan
Expected vs. Unexpected: Selecting Right Measures of Interestingness 2020 Sharma, Rahul
High-Utility Interval-Based Sequences 2020 Mirbagheri, S. Mohammad
A Scalable Randomized Algorithm for Triangle Enumeration on Graphs Based on SQL Queries 2020 Farouzi, Abir
Building a Competitive Associative Classifier 2020 Sood, Nitakshi
Predicting Customer Churn for Insurance Data 2020 Scriney, Michael
Which Bills Are Lobbied? Predicting and Interpreting Lobbying Activity in the US 2020 Slobozhan, Ivan
Alle Artikel auflisten