BanditFuzz: A Reinforcement-Learning Based Performance Fuzzer for SMT Solvers

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:VSTTE (12. : 2020 : Online) Software verification
1. Verfasser: Scott, Joseph (VerfasserIn)
Weitere Verfasser: Mora, Federico (VerfasserIn), Ganesh, Vijay (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
BanditFuzz: A Reinforcement-Learning Based Performance Fuzzer for SMT Solvers 2020 Scott, Joseph
Automatic Detection and Repair of Transition- Based Leakage in Software Binaries 2020 Athanasiou, Konstantinos
Verified Transformations and Hoare Logic: Beautiful Proofs for Ugly Assembly Language 2020 Bosamiya, Jay
An Efficient Floating-Point Bit-Blasting API for Verifying C Programs 2020 Gadelha, Mikhail R.
Verification of an Optimized NTT Algorithm 2020 Navas, Jorge A.
QPR Verify: A Static Analysis Tool for Embedded Software Based on Bounded Model Checking 2020 Biining, Marko Kleine
Verified Translation Between Purely Functional and Imperative Domain Specific Languages in HELIX 2020 Zaliva, Vadim
Synthesis of Solar Photovoltaic Systems: Optimal Sizing Comparison 2020 Trinda, Alessandro
Can We Avoid Rounding-Error Estimation in HPC Codes and Still Get Trustworthy Results? 2020 Jézéquel, Fabienne
SARL: OO Framework Specification for Static Analysis 2020 Ferrara, Pietro
MCBAT: Model Counting for Constraints over Bounded Integer Arrays 2020 Molavi, Abtin
Rigorous Enclosure of Round-Off Errors in Floating-Point Computations 2020 Garcia, Rémy
Towards Numerical Assistants: Trust, Measurement, Community, and Generality for the Numerical Workbench 2020 Panchekha, Pavel
Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive Invariants 2020 Kabi, Bibek
Alle Artikel auflisten