Mitigating Gender Bias in Machine Learning Data Sets

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIAS (1. : 2020 : Lissabon; Online) Bias and social aspects in search and recommendation
1. Verfasser: Leavy, Susan (VerfasserIn)
Weitere Verfasser: Meaney, Gerardine (VerfasserIn), Wade, Karen (VerfasserIn), Greene, Derek (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Why Do We Need to Be Bots? What Prevents Society from Detecting Biases in Recommendation Systems 2020 Krafft, Tobias D.
Effect of Debiasing on Information Retrieval 2020 Gerritse, Emma J.
What Kind of Content Are You Prone to Tweet? Multi-topic Preference Model for Tweeters 2020 Recalde, Lorena
Enriching Product Catalogs with User Opinions 2020 Melo, Tiago de
Facets of Fairness in Search and Recommendation 2020 Verma, Sahil
bias goggles: Exploring the Bias of Web Domains Through the Eyes of Users 2020 Konstantakis, Giannis
Beyond Accuracy in Link Prediction 2020 Sanz-Cruzado, Javier
A Novel Similarity Measure for Group Recommender Systems with Optimal Time Complexity 2020 Ramos, Guilherme
The Impact of Foursquare Checkins on Users’ Emotions on Twitter 2020 Falavarjani, Seyed Amin Mirlohi
Recommendation Filtering à la carte for Intelligent Tutoring Systems 2020 Silva, Wesley
Matchmaking Under Fairness Constraints: A Speed Dating Case Study 2020 Paraschakis, Dimitris
Data Pipelines for Personalized Exploration of Rated Datasets 2020 Amer-Yahia, Sihem
Venue Suggestion Using Social-Centric Scores 2020 Aliannejadi, Mohammad
Mitigating Gender Bias in Machine Learning Data Sets 2020 Leavy, Susan
Improving News Personalization Through Search Logs 2020 Bai, Xiao
Analyzing the Interaction of Users with News Articles to Create Personalization Services 2020 Celi, Alessandro
Using String-Comparison Measures to Improve and Evaluate Collaborative Filtering Recommender Systems 2020 Pascoal, Luiz Mario Lustosa
Alle Artikel auflisten