Distributed Learning of Neural Networks with One Round of Communication

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ECML PKDD (4. : 2019 : Würzburg) Machine learning and knowledge discovery in databases ; Part 1
1. Verfasser: Izbicki, Mike (VerfasserIn)
Weitere Verfasser: Shelton, Christian R. (VerfasserIn)
Pages:1
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks for Reporting Datasets 2020 Volcker, Claas
Automating Common Data Science Matrix Transformations 2020 Contreras-Ochando, Lidia
Learning Parsers for Technical Drawings 2020 Daele, Dries van
ReinBo: Machine Learning Pipeline Conditional Hierarchy Search and Configuration with Bayesian Optimization Embedded Reinforcement Learning 2020 Sun, Xudong
The autofeat Python Library for Automated Feature Engineering and Selection 2020 Horn, Franziska
Global Explanations with Local Scoring 2020 Setzu, Mattia
Effect of Superpixel Aggregation on Explanations in LIME — A Case Study with Biological Data 2020 Schallner, Ludwig
Adversarial Robustness Curves 2020 Göpfert, Christina
Local Interpretation Methods to Machine Learning Using the Domain of the Feature Space 2020 Botari, Tiago
Distributed Learning of Neural Networks with One Round of Communication 2020 Izbicki, Mike
LioNets: Local Interpretation of Neural Networks Through Penultimate Layer Decoding 2020 Mollas, Ioannis
SOS-EW: System for Overdose Spike Early Warning Using Drug Mover's Distance-Based Hawkes Processes. 2020 Chiang, Wen-Hao
Transferring Clinical Prediction Models Across Hospitals and Electronic Health Record Systems 2020 Curth, Alicia
Forecast of Study Success in the STEM Disciplines Based Solely on Academic Records 2020 Pensel, Lukas
Prediction of Frequent Out-Of-Hours’ Medical Use 2020 Wallace, Duncan
Automating Data Science The ABC of Data: A Classifying Framework for Data Readiness 2020 Castelijns, Laurens A.
Towards Automated Configuration of Stream Clustering Algorithms 2020 Carnein, Matthias
Learning and Interpreting Potentials for Classical Hamiltonian Systems 2020 Bhat, Harish S.
Measuring Unfairness Through Game-Theoretic Interpretability 2020 Cesaro, Juliana
Decentralized Recommendation Based on Matrix Factorization: A Comparison of Gossip and Federated Learning 2020 Hegedüs, István
Alle Artikel auflisten