Treating Artificial Neural Net Training as a Nonsmooth Global Optimization Problem

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:LOD (5. : 2019 : Siena) Machine learning, optimization, and data science
1. Verfasser: Griewank, Andreas (VerfasserIn)
Weitere Verfasser: Rojas, Ángel (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2019
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Relationship Estimation Metrics for Binary SoC Data 2019 McEwan, Dave
The Measure of Regular Relations Recognition Applied to the Supervised Classification Task 2019 Mikheev, Yuriy
A New Baseline for Automated Hyper-Parameter Optimization 2019 Geitle, Marius
Parameter Optimization of Polynomial Kernel SVM from miniCV 2019 Yeh, Li-Chia
Load Forecasting in District Heating Networks: Model Comparison on a Real-World Case Study 2019 Bianchi, Federico
Trading-off Data Fit and Complexity in Training Gaussian Processes with Multiple Kernels 2019 Chugh, Tinkle
Data Anonymization for Privacy Aware Machine Learning 2019 Jaidan, David Nizar
Long Short-Term Memory Networks for Earthquake Detection in Venezuelan Region 2019 Mus, Sergi
Deep Neural Network Ensembies 2019 Tao, Sean
LIA: A Label-Independent Algorithm for Feature Selection for Supervised Learning 2019 Gilboa-Freedman, Gail
A Beam Search for the Longest Common Subsequence Problem Guided by a Novel Approximate Expected Length Calculation 2019 Djukanovic, Marko
The Induction Problem: A Machine Learning Vindication Argument 2019 Bontempi, Gianluca
Geospatial Dimension in Association Rule Mining: The Case Study of the Amazon Charcoal Tree 2019 Prata, David N.
CoPASample: A Heuristics Based Covariance Preserving Data Augmentation 2019 Agrawal, Rishabh
A Framework for Multi-fidelity Modeling in Global Optimization Approaches 2019 Zabinsky, Zelda B.
Combinatorial Learning in Traffic Management 2019 Sartor, Giorgio
Analysing the Overfit of the Auto-sklearn Automated Machine Learning Tool 2019 Fabris, Fabio
A Chained Neural Network Model for Photovoltaic Power Forecast 2019 Gajek, Carola
Multi-task Learning by Pareto Optimality 2019 Dyankov, Deyan
Modelling Chaotic Time Series Using Recursive Deep Self-organising Neural Networks 2019 Berglund, Erik
Alle Artikel auflisten