Automated Multi-sequence Cardiac MRI Segmentation Using Supervised Domain Adaptation

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical atlases and computational models of the heart
1. Verfasser: Vesal, Sulaiman (VerfasserIn)
Weitere Verfasser: Ravikumar, Nishant (VerfasserIn), Maier, Andreas (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Comparison of 2D Echocardiography and Cardiac Cine MRI in the Assessment of Regional Left Ventricular Wall Thickness 2020 Hal, Vera H. J. van
Conditional Generative Adversarial Networks for the Prediction of Cardiac Contraction from Individual Frames 2020 Ossenberg-Engels, Julius
Towards Hyper-Reduction of Cardiac Models Using Poly-affine Transformations 2020 Desrues, Gaëtan
Multimodal Cardiac Segmentation Using Disentangled Representation Learning 2020 Chartsias, Agisilaos
End-to-end Cardiac Ultrasound Simulation for a Better Understanding of Image Quality 2020 Legay, Alexandre
Deep Learning for Cardiac Motion Estimation: Supervised vs. Unsupervised Training 2020 Qiu, Huaqi
Cardiac Segmentation of LGE MRI with Noisy Labels 2020 Roth, Holger
SK-Unet: An Improved U-Net Model with Selective Kernel for the Segmentation of Multi-sequence Cardiac MR 2020 Wang, Xiyue
Knowledge-Based Multi-sequence MR Segmentation via Deep Learning with a Hybrid U-Net++ Model 2020 Ren, Jinchang
A Two-Stage Fully Automatic Segmentation Scheme Using Both 2D and 3D U-Net for Multi-sequence Cardiac MR 2020 Xu, Haohao
Best (and Worst) Practices for Organizing a Challenge on Cardiac Biophysical Models During Al Summer: The CRT-EPiggy19 Challenge 2020 Camara, Oscar
Left Ventricle Quantification Using Direct Regression with Segmentation Regularization and Ensembles of Pretrained 2D and 3D CNNs 2020 Gessert, Nils
Eikonal Model Personalisation Using Invasive Data to Predict Cardiac Resynchronisation Therapy Electrophysiological Response 2020 Cedilnik, Nicolas
Manufacturing of Ultrasound- and MRI-Compatible Aortic Valves Using 3D Printing for Analysis and Simulation 2020 Wang, Shu
Assessing the Impact of Blood Pressure on Cardiac Function Using Interpretable Biomarkers and Variational Autoencoders 2020 Puyol-Antón, Esther
A Cascade Regression Model for Anatomical Landmark Detection 2020 Tan, Zimeng
Fully Automatic 3D Bi-Atria Segmentation from Late Gadolinium-Enhanced MRIs Using Double Convolutional Neural Networks 2020 Xiong, Zhaohan
DeepLA: Automated Segmentation of Left Atrium from Interventional 3D Rotational Angiography Using CNN 2020 Bamps, Kobe
Style Data Augmentation for Robust Segmentation of Multi-modality Cardiac MRI 2020 Ly, Buntheng
Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation 2020 Chen, Chen
Alle Artikel auflisten