End-to-end Cardiac Ultrasound Simulation for a Better Understanding of Image Quality

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical atlases and computational models of the heart
1. Verfasser: Legay, Alexandre (VerfasserIn)
Weitere Verfasser: Tiennot, Thomas (VerfasserIn), Gelly, Jean-Francois (VerfasserIn), Sermesant, Maxime (VerfasserIn), Bulte, Jean (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2020
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Co-registered Cardiac ex vivo DT Images and Histological Images for Fibrosis Quantification 2020 Lin, Peter
Ultra-DenseNet for Low-Dose X-Ray Image Denoising in Cardiac Catheder-Based Procedures 2020 Luo, Yimin
4D CNN for Semantic Segmentation of Cardiac Volumetric Sequences 2020 Myronenko, Andriy
Two-Stage 2D CNN for Automatic Atrial Segmentation from LGE-MRIs 2020 Jamart, Kevin
Learning Interactions Between Cardiac Shape and Deformation: Application to Pulmonary Hypertension 2020 Folco, Maxime Di
Non-invasive Pressure Estimation in Patients with Pulmonary Arterial Hypertension: Data-Driven or Model-Based? 2020 Yang, Yingyu
Prediction of CRT Activation Sequence by Personalization of Biventricular Models from Electroanatomical Maps 2020 Gomez, Juan Francisco
Prediction of CRT Response on Personalized Computer Models 2020 Khamzin, Svyatoslav
Comparison of 2D Echocardiography and Cardiac Cine MRI in the Assessment of Regional Left Ventricular Wall Thickness 2020 Hal, Vera H. J. van
Conditional Generative Adversarial Networks for the Prediction of Cardiac Contraction from Individual Frames 2020 Ossenberg-Engels, Julius
Towards Hyper-Reduction of Cardiac Models Using Poly-affine Transformations 2020 Desrues, Gaëtan
Multimodal Cardiac Segmentation Using Disentangled Representation Learning 2020 Chartsias, Agisilaos
End-to-end Cardiac Ultrasound Simulation for a Better Understanding of Image Quality 2020 Legay, Alexandre
Deep Learning for Cardiac Motion Estimation: Supervised vs. Unsupervised Training 2020 Qiu, Huaqi
Cardiac Segmentation of LGE MRI with Noisy Labels 2020 Roth, Holger
SK-Unet: An Improved U-Net Model with Selective Kernel for the Segmentation of Multi-sequence Cardiac MR 2020 Wang, Xiyue
Knowledge-Based Multi-sequence MR Segmentation via Deep Learning with a Hybrid U-Net++ Model 2020 Ren, Jinchang
A Two-Stage Fully Automatic Segmentation Scheme Using Both 2D and 3D U-Net for Multi-sequence Cardiac MR 2020 Xu, Haohao
Best (and Worst) Practices for Organizing a Challenge on Cardiac Biophysical Models During Al Summer: The CRT-EPiggy19 Challenge 2020 Camara, Oscar
Left Ventricle Quantification Using Direct Regression with Segmentation Regularization and Ensembles of Pretrained 2D and 3D CNNs 2020 Gessert, Nils
Alle Artikel auflisten