Enabling GPU-Enhanced Computer Vision and Machine Learning Research Using Containers

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High performance computing
1. Verfasser: Michel, Martial (VerfasserIn)
Weitere Verfasser: Burnett, Nicholas (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2019
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Titel Jahr Verfasser
Data Pallets: Containerizing Storage for Reproducibility and Traceability 2019 Lofstead, Jay
Modernizing Titan2D, a Parallel AMR Geophysical Flow Code to Support Multiple Rheologies and Extendability 2019 Simakov, Nikolay A.
Asynchronous AMR on Multi-GPUs 2019 Faroogi, Muhammad Nufail
Footprinting Parallel I/O - Machine Learning to Classify Application's I/O Behavior 2019 Betke, Eugen
Adventures in NoSQL for Metadata Management 2019 Lofstead, Jay
Performance Evaluation of MPI Libraries on GPU-Enabled OpenPOWER Architectures: Early Experiences 2019 Khorassani, Kawthar Shafie
Exploring the Behavior of Coherent Accelerator Processor Interface (CAPI) on IBM Power8+ Architecture and FlashSystem 900 2019 Velusamy, Kaushik
MagmaDNN: Towards High-Performance Data Analytics and Machine Learning for Data-Driven Scientific Computing 2019 Nichols, Daniel
Sarus: Highly Scalable Docker Containers for HPC Systems 2019 Benedicic, Lucas
Software and Hardware Co-design for Low-Power HPC Platforms 2019 Ploumidis, Manolis
Comparing High Performance Computing Accelerator Programming Models 2019 Pophale, Swaroop
MBWU: Benefit Quantification for Data Access Function Offloading 2019 Liu, Jianshen
Mediating Data Center Storage Diversity in HPC Applications with FAODEL 2019 Widener, Patrick
An Architecture for High Performance Computing and Data Systems Using Byte-Addressable Persistent Memory 2019 Jackson, Adrian
An I/O Analysis of HPC Workloads on CephFS and Lustre 2019 Chiusole, Alberto
Performance Comparison for Neuroscience Application Benchmarks 2019 Herten, Andreas
Three Numerical Reproducibility Issues That Can Be Explained as Round-Off Error 2019 Mascagni, Michael
Deep Learning at Scale for Subgrid Modeling in Turbulent Flows: Regression and Reconstruction 2019 Bode, Mathis
The Role of Interactive Super-Computing in Using HPC for Urgent Decision Making 2019 Brown, Nick
Acceleration of Scientific Deep Learning Models on Heterogeneous Computing Platform with Intel® FPGAs 2019 Jiang, Chao
Alle Artikel auflisten