Quadratic vector equations on complex upper half-plane

The authors consider the nonlinear equation -\frac 1m=z+Sm with a parameter z in the complex upper half plane \mathbb H , where S is a positivity preserving symmetric linear operator acting on bounded functions. The solution with values in \mathbb H is unique and its z-dependence is conveniently des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ajanki, Oskari Heikki (VerfasserIn)
Weitere Verfasser: Erdös, László (VerfasserIn), Krüger, Torben (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Providence, RI American Mathematical Society 2019
Schriftenreihe:Memoirs of the American Mathematical Society volume 261, number 1261 (September 2019)
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors consider the nonlinear equation -\frac 1m=z+Sm with a parameter z in the complex upper half plane \mathbb H , where S is a positivity preserving symmetric linear operator acting on bounded functions. The solution with values in \mathbb H is unique and its z-dependence is conveniently described as the Stieltjes transforms of a family of measures v on \mathbb R. In a previous paper the authors qualitatively identified the possible singular behaviors of v: under suitable conditions on S we showed that in the density of v only algebraic singularities of degree two or three may occur. In this paper the authors give a comprehensive analysis of these singularities with uniform quantitative controls. They also find a universal shape describing the transition regime between the square root and cubic root singularities. Finally, motivated by random matrix applications in the authors' companion paper they present a complete stability analysis of the equation for any z\in \mathbb H, including the vicinity of the singularities.
Beschreibung:"September 2019, volume 261, number 1261 (fifth of 7 numbers)"
Literaturverzeichnis: Seite 131-133
Beschreibung:v, 133 Seiten
Diagramme, Illustrationen
ISBN:9781470436834
978-1-4704-3683-4