Practical automated machine learning on Azure using Azure machine learning to quickly build AI solutions
Develop smart applications without spending days and weeks building machine-learning models. With this practical book, you'll learn how to apply Automated Machine Learning, a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Beijing, Boston, Farnham, Sebastopol, Tokyo
O'Reilly
September 2019
|
Ausgabe: | First edition |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Develop smart applications without spending days and weeks building machine-learning models. With this practical book, you'll learn how to apply Automated Machine Learning, a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide a mix of technical depth, hands-on examples, and case studies that show how customers are solving real-world problems with this technology. Building machine learning models is an iterative and time-consuming process. Even those who know how to create these models may be limited in how much they can explore. Once you complete this book, you'll understand how to apply Automated Machine Learning to your data right away. Learn how companies in different industries are benefiting from Automated Machine Learning Get started with Automated Machine Learning using Azure Explore aspects such as algorithm selection, auto featurization, and hyperparameter tuning Understand how data analysts, BI professionals, and developers can use Automated Machine Learning in their familiar tools and experiences Learn how to get started using Automated Machine Learning for use cases including classification and regression. |
---|---|
Beschreibung: | xiv, 178 Seiten Illustrationen, Diagramme |
ISBN: | 9781492055594 978-1-4920-5559-4 149205559X 1-4920-5559-X |