Broad learning through fusions an application on social networks

1 Broad Learning Introduction -- 2 Machine Learning Overview -- 3 Social Network Overview -- 4 Supervised Network Alignment -- 5 Unsupervised Network Alignment -- 6 Semi-supervised Network Alignment -- 7 Link Prediction -- 8 Community Detection -- 9 Information Diffusion -- 10 Viral Marketing -- 11...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zhang, Jiawei (VerfasserIn)
Weitere Verfasser: Yu, Philip S. (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham, Switzerland Springer 2019
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1 Broad Learning Introduction -- 2 Machine Learning Overview -- 3 Social Network Overview -- 4 Supervised Network Alignment -- 5 Unsupervised Network Alignment -- 6 Semi-supervised Network Alignment -- 7 Link Prediction -- 8 Community Detection -- 9 Information Diffusion -- 10 Viral Marketing -- 11 Network Embedding -- 12 Frontier and Future Directions -- References
This book offers a clear and comprehensive introduction to broad learning, one of the novel learning problems studied in data mining and machine learning. Broad learning aims at fusing multiple large-scale information sources of diverse varieties together, and carrying out synergistic data mining tasks across these fused sources in one unified analytic. This book takes online social networks as an application example to introduce the latest alignment and knowledge discovery algorithms. Besides the overview of broad learning, machine learning and social network basics, specific topics covered in this book include network alignment, link prediction, community detection, information diffusion, viral marketing, and network embedding
Beschreibung:xv, 419 Seiten
Diagramme, Illustrationen
ISBN:9783030125271
978-3-030-12527-1