Structural equation modeling applications using Mplus

Machine generated contents note: Preface 1. Introduction 1.1 Model formulation 1.2 Model identification 1.3 Model estimation 1.4 Model evaluation 1.5 Model modification 2. Confirmatory factor analysis (CFA) Models 2.1 Basics of CFA 2.2 CFA with continuous indicators 2.3 CFA with non-normal and cens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wang, Jichuan (VerfasserIn)
Weitere Verfasser: Wang, Xiaoqian (BerichterstatterIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Beijing Higher Education Press 2012
Chichester Wiley u.a. 2012
Schriftenreihe:Wiley series in probability and statistics
Schlagworte:
Online Zugang:Cover
Inhaltstext
Cover
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine generated contents note: Preface 1. Introduction 1.1 Model formulation 1.2 Model identification 1.3 Model estimation 1.4 Model evaluation 1.5 Model modification 2. Confirmatory factor analysis (CFA) Models 2.1 Basics of CFA 2.2 CFA with continuous indicators 2.3 CFA with non-normal and censored continuous indicators 2.4 CFA with categorical indicators 2.5 Higher-order CFA 3. Structural Equation Models (SEM) 3.1 Multiple indicators and multiple causes (MIMIC) Model 3.2 Structural equation model 3.3 Correcting for measurement errors in single indicator variables 3.4 Testing interactions involving latent variables 4. Latent growth modeling (LGM) for longitudinal data 4.1 Linear latent growth model (LGM) 4.2 Non-linear LGM 4.3 LGM with multiple growth processes 4.4 Two-part LGM 4.5 LGM with categorical outcomes 5. Multi-Group Modeling 5.1 Multi-group confirmatory factor analysis (CFA) model 5.2 Multi-group structural equation model (SEM) 5.3 Multi-group latent growth model (LGM) 6. Mixture models 6.1 Latent class analysis (LCA) model 6.2 Latent transition analysis (LTA) model 6.3 Growth mixture model (GMM) 6.4 Factor Mixture Model (FMM) 7. Sample Size for Structural Equation Modeling 7.1 Rule of thumbs for sample size needed for SEM 7.2 Satorra-Saris's method for sample size estimation 7.3 Monte Carlo simulation for sample size estimation 7.4 Estimate sample size for SEM based on model fit statistics/indexes References Index .
"Focuses on the methods and practical aspects of SEM models using Mplus"--
Beschreibung:Includes bibliographical references and index
Beschreibung:XI, 453 S.
Ill., graph. Darst.
24 cm
ISBN:9781119978299
978-1-119-97829-9
1119978297
1-119-97829-7