Statistical and process-based models for understanding species distributions in changing environments

Dissertation (kumulativ), Universität Potsdam, 2017

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schibalski, Anett (VerfasserIn)
Körperschaft: Universität Potsdam (Grad-verleihende Institution)
Weitere Verfasser: Schröder, Boris (AkademischeR BetreuerIn), Lehtonen, Aleksi (AkademischeR BetreuerIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Potsdam 2017
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dissertation (kumulativ), Universität Potsdam, 2017
Understanding the distribution of species is fundamental for biodiversity conservation, ecosystem management, and increasingly also for climate impact assessment. The presence of a species in a given site depends on physiological limitations (abiotic factors), interactions with other species (biotic factors), migratory or dispersal processes (site accessibility) as well as the continuing effects of past events, e.g. disturbances (site legacy). Existing approaches to predict species distributions either (i) correlate observed species occurrences with environmental variables describing abiotic limitations, thus ignoring biotic interactions, dispersal and legacy effects (statistical species distribution model, SDM); or (ii) mechanistically model the variety of processes determining species distributions (process-based model, PBM). SDMs are widely used due to their easy applicability and ability to handle varied data qualities. But they fail to reproduce the dynamic response of species distributions to changing conditions. PBMs are…
Beschreibung:ix, 129 Seiten
Diagramme, Illustrationen