Parallel multiple shooting for the solution of initial value problems

Abstract: "The computing time for the numerical solution of initial-value problems y'(x) = f(x, Y), y(x₀) = y₀, is closely related to the number of evaluations of f. In general this number can only be reduced slightly on parallel computers, even if simultaneous evaluations of f are counted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kiehl, Martin (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: München 1993
Schriftenreihe:Technische Universität <München>: TUM-MATH 9309
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract: "The computing time for the numerical solution of initial-value problems y'(x) = f(x, Y), y(x₀) = y₀, is closely related to the number of evaluations of f. In general this number can only be reduced slightly on parallel computers, even if simultaneous evaluations of f are counted as one evaluation. For special problems, however, it is possible to construct special methods which show a remarkable speed-up close to 100 on parallel computers. Multiple shooting, a method for boundary-value problems with an inherent parallelism, can also be applied efficiently to linear initial-value problems and to non-linear initial- value problems if good approximations are available."
Beschreibung:20 S.
graph. Darst.